Febrile neutropenia, a common side effect of myelosuppressive chemotherapy in patients with cancer, can result in prolonged hospitalization and broad-spectrum antibiotic use, often prompting treatment delays or dose reductions of drug regimens. Prophylactic use of myeloid growth factors (mainly the colony-stimulating factors filgrastim and pegfilgrastim) in patients of heightened risk can reduce the severity and duration of febrile neutropenia. The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Myeloid Growth Factors provide recommendations on the use of these agents mainly in the oncology setting based on clinical evidence and expert consensus. This version includes revisions surrounding the issue of timing of pegfilgrastim administration. It also includes new sections on tbo-filgrastim, a recently approved agent that is biologically similar to filgrastim, and the role of myeloid growth factors in the hematopoietic cell transplant setting

  • 1.

    LymanGHKudererNM. Epidemiology of febrile neutropenia. Support Cancer Ther2003;1:2335.

  • 2.

    DaleDCMcCarterGCCrawfordJLymanGH. Myelotoxicity and dose intensity of chemotherapy: reporting practices from randomized clinical trials. J Natl Compr Canc Netw2003;1:440454.

    • Search Google Scholar
    • Export Citation
  • 3.

    DaleDC. Colony-stimulating factors for the management of neutropenia in cancer patients. Drugs2002;62(Suppl 1):115.

  • 4.

    FortnerBVSchwartzbergLTauerK. Impact of chemotherapy-induced neutropenia on quality of life: a prospective pilot investigation. Support Care Cancer2005;13:522528.

    • Search Google Scholar
    • Export Citation
  • 5.

    GisselbrechtCHaiounCLepageE. Placebo-controlled phase III study of lenograstim (glycosylated recombinant human granulocyte colony-stimulating factor) in aggressive non-Hodgkin’s lymphoma: factors influencing chemotherapy administration. Groupe d’Etude des Lymphomes de l’Adulte. Leuk Lymphoma1997;25:289300.

    • Search Google Scholar
    • Export Citation
  • 6.

    Timmer-BonteJNde BooTMSmitHJ. Prevention of chemotherapy-induced febrile neutropenia by prophylactic antibiotics plus or minus granulocyte colony-stimulating factor in small-cell lung cancer: a Dutch Randomized Phase III Study. J Clin Oncol2005;23:79747984.

    • Search Google Scholar
    • Export Citation
  • 7.

    Trillet-LenoirVGreenJManegoldC. Recombinant granulocyte colony stimulating factor reduces the infectious complications of cytotoxic chemotherapy. Eur J Cancer1993;29A:319324.

    • Search Google Scholar
    • Export Citation
  • 8.

    VogelCLWojtukiewiczMZCarrollRR. First and subsequent cycle use of pegfilgrastim prevents febrile neutropenia in patients with breast cancer: a multicenter, double-blind, placebo-controlled phase III study. J Clin Oncol2005;23:11781184.

    • Search Google Scholar
    • Export Citation
  • 9.

    BuiBNChevallierBChevreauC. Efficacy of lenograstim on hematologic tolerance to MAID chemotherapy in patients with advanced soft tissue sarcoma and consequences on treatment dose-intensity. J Clin Oncol1995;13:26292636.

    • Search Google Scholar
    • Export Citation
  • 10.

    ChevallierBCholletPMerroucheY. Lenograstim prevents morbidity from intensive induction chemotherapy in the treatment of inflammatory breast cancer. J Clin Oncol1995;13:15641571.

    • Search Google Scholar
    • Export Citation
  • 11.

    CrawfordJOzerHStollerR. Reduction by granulocyte colony-stimulating factor of fever and neutropenia induced by chemotherapy in patients with small-cell lung cancer. N Engl J Med1991;325:164170.

    • Search Google Scholar
    • Export Citation
  • 12.

    GatzemeierUKleisbauerJPDringsP. Lenograstim as support for ACE chemotherapy of small-cell lung cancer: a phase III, multicenter, randomized study. Am J Clin Oncol2000;23:393400.

    • Search Google Scholar
    • Export Citation
  • 13.

    MuhonenTJantunenIPertovaaraH. Prophylactic filgrastim (G-CSF) during mitomycin-C, mitoxantrone, and methotrexate (MMM) treatment for metastatic breast cancer. A randomized study. Am J Clin Oncol1996;19:232234.

    • Search Google Scholar
    • Export Citation
  • 14.

    OsbyEHagbergHKvaloyS. CHOP is superior to CNOP in elderly patients with aggressive lymphoma while outcome is unaffected by filgrastim treatment: results of a Nordic Lymphoma Group randomized trial. Blood2003;101:38403848.

    • Search Google Scholar
    • Export Citation
  • 15.

    PettengellRGurneyHRadfordJA. Granulocyte colony-stimulating factor to prevent dose-limiting neutropenia in non-Hodgkin’s lymphoma: a randomized controlled trial. Blood1992;80:14301436.

    • Search Google Scholar
    • Export Citation
  • 16.

    ZinzaniPLPavoneEStortiS. Randomized trial with or without granulocyte colony-stimulating factor as adjunct to induction VNCOP-B treatment of elderly high-grade non-Hodgkin’s lymphoma. Blood1997;89:39743979.

    • Search Google Scholar
    • Export Citation
  • 17.

    DoorduijnJKvan der HoltBvan ImhoffGW. CHOP compared with CHOP plus granulocyte colony-stimulating factor in elderly patients with aggressive non-Hodgkin’s lymphoma. J Clin Oncol2003;21:30413050.

    • Search Google Scholar
    • Export Citation
  • 18.

    FossaSDKayeSBMeadGM. Filgrastim during combination chemotherapy of patients with poor-prognosis metastatic germ cell malignancy. European Organization for Research and Treatment of Cancer, Genito-Urinary Group, and the Medical Research Council Testicular Cancer Working Party, Cambridge, United Kingdom. J Clin Oncol1998;16:716724.

    • Search Google Scholar
    • Export Citation
  • 19.

    CitronMLBerryDACirrincioneC. Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J Clin Oncol2003;21:14311439.

    • Search Google Scholar
    • Export Citation
  • 20.

    PfreundschuhMTrumperLKloessM. Two-weekly or 3-weekly CHOP chemotherapy with or without etoposide for the treatment of elderly patients with aggressive lymphomas: results of the NHL-B2 trial of the DSHNHL. Blood2004;104:634641.

    • Search Google Scholar
    • Export Citation
  • 21.

    BohliusJReiserMSchwarzerGEngertA. Granulopoiesis-stimulating factors to prevent adverse effects in the treatment of malignant lymphoma. Cochrane Database Syst Rev2004:CD003189.

    • Search Google Scholar
    • Export Citation
  • 22.

    SungLNathanPCAlibhaiSM. Meta-analysis: effect of prophylactic hematopoietic colony-stimulating factors on mortality and outcomes of infection. Ann Intern Med2007;147:400411.

    • Search Google Scholar
    • Export Citation
  • 23.

    KudererNMDaleDCCrawfordJLymanGH. Impact of primary prophylaxis with granulocyte colony-stimulating factor on febrile neutropenia and mortality in adult cancer patients receiving chemotherapy: a systematic review. J Clin Oncol2007;25:31583167.

    • Search Google Scholar
    • Export Citation
  • 24.

    LymanGHDaleDCWolffDA. Acute myeloid leukemia or myelodysplastic syndrome in randomized controlled clinical trials of cancer chemotherapy with granulocyte colony-stimulating factor: a systematic review. J Clin Oncol2010;28:29142924.

    • Search Google Scholar
    • Export Citation
  • 25.

    LymanGHKudererNM. The economics of the colony-stimulating factors in the prevention and treatment of febrile neutropenia. Crit Rev Oncol Hematol2004;50:129146.

    • Search Google Scholar
    • Export Citation
  • 26.

    CoslerLEEldar-LissaiACulakovaE. Therapeutic use of granulocyte colony-stimulating factors for established febrile neutropenia: effect on costs from a hospital perspective. Pharmacoeconomics2007;25:343351.

    • Search Google Scholar
    • Export Citation
  • 27.

    DoorduijnJKBuijtIvan der HoltB. Economic evaluation of prophylactic granulocyte colony stimulating factor during chemotherapy in elderly patients with aggressive non-Hodgkin’s lymphoma. Haematologica2004;89:11091117.

    • Search Google Scholar
    • Export Citation
  • 28.

    Eldar-LissaiACoslerLECulakovaELymanGH. Economic analysis of prophylactic pegfilgrastim in adult cancer patients receiving chemotherapy. Value Health2008;11:172179.

    • Search Google Scholar
    • Export Citation
  • 29.

    NumnumTMKimballKJRocconiRP. Pegfilgrastim for the prevention of febrile neutropenia in patients with epithelial ovarian carcinoma—a cost-effectiveness analysis. Int J Gynecol Cancer2007;17:10191024.

    • Search Google Scholar
    • Export Citation
  • 30.

    Timmer-BonteJNAdangEMTermeerE. Modeling the cost effectiveness of secondary febrile neutropenia prophylaxis during standard-dose chemotherapy. J Clin Oncol2008;26:290296.

    • Search Google Scholar
    • Export Citation
  • 31.

    Food and Drug Administration. Filgrastim label information. Available at: http://dailymed.nlm.nih.gov/dailymed/lookup.cfm?setid=97cc73cc-b5b7-458a-a933-77b00523e193. Accessed May 1 2013.

    • Search Google Scholar
    • Export Citation
  • 32.

    Food and Drug Administration. Pegfilgrastim label information. Available at: http://dailymed.nlm.nih.gov/dailymed/lookup.cfm?setid=fdfe5d72-6b80-435a-afa4-c5d74dd852ce. Accessed May 1 2013.

    • Search Google Scholar
    • Export Citation
  • 33.

    TigueCCMcKoyJMEvensAM. Granulocyte-colony stimulating factor administration to healthy individuals and persons with chronic neutropenia or cancer: an overview of safety considerations from the Research on Adverse Drug Events and Reports project. Bone Marrow Transplant2007;40:185192.

    • Search Google Scholar
    • Export Citation
  • 34.

    D’SouzaAJaiyesimiITrainorLVenuturumiliP. Granulocyte colony-stimulating factor administration: adverse events. Transfus Med Rev2008;22:280290.

    • Search Google Scholar
    • Export Citation
  • 35.

    AdlerBKSalzmanDECarabasiMH. Fatal sickle cell crisis after granulocyte colony-stimulating factor administration. Blood2001;97:33133314.

    • Search Google Scholar
    • Export Citation
  • 36.

    GriggAP. Granulocyte colony-stimulating factor-induced sickle cell crisis and multiorgan dysfunction in a patient with compound heterozygous sickle cell/beta+ thalassemia. Blood2001;97:39983999.

    • Search Google Scholar
    • Export Citation
  • 37.

    KangEMAremanEMDavid-OcampoV. Mobilization, collection, and processing of peripheral blood stem cells in individuals with sickle cell trait. Blood2002;99:850855.

    • Search Google Scholar
    • Export Citation
  • 38.

    MartinWGRistowKMHabermannTM. Bleomycin pulmonary toxicity has a negative impact on the outcome of patients with Hodgkin’s lymphoma. J Clin Oncol2005;23:76147620.

    • Search Google Scholar
    • Export Citation
  • 39.

    AzoulayEAttalahHHarfA. Granulocyte colony-stimulating factor or neutrophil-induced pulmonary toxicity: myth or reality? Systematic review of clinical case reports and experimental data. Chest2001;120:16951701.

    • Search Google Scholar
    • Export Citation
  • 40.

    EvensAMCilleyJOrtizT. G-CSF is not necessary to maintain over 99% dose-intensity with ABVD in the treatment of Hodgkin lymphoma: low toxicity and excellent outcomes in a 10-year analysis. Br J Haematol2007;137:545552.

    • Search Google Scholar
    • Export Citation
  • 41.

    LymanGHLymanCHAgboolaO. Risk models for predicting chemotherapy-induced neutropenia. Oncologist2005;10:427437.

  • 42.

    AslaniASmithRCAllenBJ. The predictive value of body protein for chemotherapy-induced toxicity. Cancer2000;88:796803.

  • 43.

    ChrischillesEDelgadoDJStolshekBS. Impact of age and colony-stimulating factor use on hospital length of stay for febrile neutropenia in CHOP-treated non-Hodgkin’s lymphoma. Cancer Control2002;9:203211.

    • Search Google Scholar
    • Export Citation
  • 44.

    LymanGHDaleDCFriedbergJ. Incidence and predictors of low chemotherapy dose-intensity in aggressive non-Hodgkin’s lymphoma: a nationwide study. J Clin Oncol2004;22:43024311.

    • Search Google Scholar
    • Export Citation
  • 45.

    LymanGHDelgadoDJ. Risk and timing of hospitalization for febrile neutropenia in patients receiving CHOP, CHOP-R, or CNOP chemotherapy for intermediate-grade non-Hodgkin lymphoma. Cancer2003;98:24022409.

    • Search Google Scholar
    • Export Citation
  • 46.

    LymanGHMorrisonVADaleDC. Risk of febrile neutropenia among patients with intermediate-grade non-Hodgkin’s lymphoma receiving CHOP chemotherapy. Leuk Lymphoma2003;44:20692076.

    • Search Google Scholar
    • Export Citation
  • 47.

    MorrisonVAPicozziVScottS. The impact of age on delivered dose intensity and hospitalizations for febrile neutropenia in patients with intermediate-grade non-Hodgkin’s lymphoma receiving initial CHOP chemotherapy: a risk factor analysis. Clin Lymphoma2001;2:4756.

    • Search Google Scholar
    • Export Citation
  • 48.

    LymanGHKudererNMCrawfordJ. Predicting individual risk of neutropenic complications in patients receiving cancer chemotherapy. Cancer2011;117:19171927.

    • Search Google Scholar
    • Export Citation
  • 49.

    SmithTJKhatcheressianJLymanGH. 2006 update of recommendations for the use of white blood cell growth factors: an evidence-based clinical practice guideline. J Clin Oncol2006;24:31873205.

    • Search Google Scholar
    • Export Citation
  • 50.

    AaproMSBohliusJCameronDA. 2010 update of EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumours. Eur J Cancer2011;47:832.

    • Search Google Scholar
    • Export Citation
  • 51.

    CrawfordJDaleDCLymanGH. Chemotherapy-induced neutropenia: risks, consequences, and new directions for its management. Cancer2004;100:228237.

    • Search Google Scholar
    • Export Citation
  • 52.

    LymanGH. Risk assessment in oncology clinical practice. From risk factors to risk models. Oncology (Williston Park)2003;17:813.

  • 53.

    HirschBRLymanGH. Biosimilars: are they ready for primetime in the United States?J Natl Compr Canc Netw2011;9:934942; quiz 943.

  • 54.

    ZelenetzADAhmedIBraudEL. NCCN Biosimilars White Paper: regulatory, scientific, and patient safety perspectives. J Natl Compr Canc Netw2011;9(Suppl 4):S122.

    • Search Google Scholar
    • Export Citation
  • 55.

    del GiglioAEniuAGanea-MotanD. XM02 is superior to placebo and equivalent to Neupogen in reducing the duration of severe neutropenia and the incidence of febrile neutropenia in cycle 1 in breast cancer patients receiving docetaxel/doxorubicin chemotherapy. BMC Cancer2008;8:332.

    • Search Google Scholar
    • Export Citation
  • 56.

    EngertAGriskeviciusLZyuzginY. XM02, the first granulocyte colony-stimulating factor biosimilar, is safe and effective in reducing the duration of severe neutropenia and incidence of febrile neutropenia in patients with non-Hodgkin lymphoma receiving chemotherapy. Leuk Lymphoma2009;50:374379.

    • Search Google Scholar
    • Export Citation
  • 57.

    GatzemeierUCiuleanuTDediuM. XM02, the first biosimilar G-CSF, is safe and effective in reducing the duration of severe neutropenia and incidence of febrile neutropenia in patients with small cell or non-small cell lung cancer receiving platinum-based chemotherapy. J Thorac Oncol2009;4:736740.

    • Search Google Scholar
    • Export Citation
  • 58.

    EngertAdel GiglioABiasP. Incidence of febrile neutropenia and myelotoxicity of chemotherapy: a meta-analysis of biosimilar G-CSF studies in breast cancer, lung cancer, and non-Hodgkin’s lymphoma. Onkologie2009;32:599604.

    • Search Google Scholar
    • Export Citation
  • 59.

    LubenauHBiasPMalyAK. Pharmacokinetic and pharmacodynamic profile of new biosimilar filgrastim XM02 equivalent to marketed filgrastim Neupogen: single-blind, randomized, crossover trial. BioDrugs2009;23:4351.

    • Search Google Scholar
    • Export Citation
  • 60.

    LubenauHSveikataAGumbreviciusG. Bioequivalence of two recombinant granulocyte colony-stimulating factor products after subcutaneous injection in healthy volunteers. Int J Clin Pharmacol Ther2009;47:275282.

    • Search Google Scholar
    • Export Citation
  • 61.

    American Society of Clinical Oncology. Letter to CMS regarding “Neulasta administered same day as chemotherapy”. 2012. Available at: http://www.asco.org/sites/default/files/letter_to_cms_rac_audit_on_neulasta_110912_lthd.pdf. Accessed May 1 2013.

    • Search Google Scholar
    • Export Citation
  • 62.

    SchumanSILambrouNRobsonK. Pegfilgrastim dosing on same day as myelosuppressive chemotherapy for ovarian or primary peritoneal cancer. J Support Oncol2009;7:225228.

    • Search Google Scholar
    • Export Citation
  • 63.

    WhitworthJMMatthewsKSShipmanKA. The safety and efficacy of day 1 versus day 2 administration of pegfilgrastim in patients receiving myelosuppressive chemotherapy for gynecologic malignancies. Gynecol Oncol2009;112:601604.

    • Search Google Scholar
    • Export Citation
  • 64.

    BurrisHABelaniCPKaufmanPA. Pegfilgrastim on the same day versus next day of chemotherapy in patients with breast cancer, non-small-cell lung cancer, ovarian cancer, and non-hodgkin’s lymphoma: results of four multicenter, double-blind, randomized phase II studies. J Oncol Pract2010;6:133140.

    • Search Google Scholar
    • Export Citation
  • 65.

    KaufmanPAParolyWRinaldiD. Randomized double blind phase 2 study evaluating same-day vs. next-day administration of pegfilgrastim with docetaxel, doxorubicin and cyclophosphamide (TAC) in women with early stage and advanced breast cancer [abstract]. Breast Cancer Res Treat2004;88:Abstract 1054.

    • Search Google Scholar
    • Export Citation
  • 66.

    SavenASchwartzbergLKaywinP. Randomized, double-blind, phase 2, study evaluating same-day vs next-day administration of pegfilgrastim with R-CHOP in non-Hodgkin’s lymphoma patients [abstract]. J Clin Oncol2006;24(Suppl 18):Abstract 7570.

    • Search Google Scholar
    • Export Citation
  • 67.

    BelaniCPRamalingamSAl-JanadiA. A randomized double-blind phase II study to evaluate same-day vs next-day administration of pegfilgrastim with carboplatin and docetaxel in patients with NSCLC [abstract]. J Clin Oncol2006;24(Suppl 18):Abstract 7110.

    • Search Google Scholar
    • Export Citation
  • 68.

    GreenMDKoelblHBaselgaJ. A randomized double-blind multicenter phase III study of fixed-dose single-administration pegfilgrastim versus daily filgrastim in patients receiving myelosuppressive chemotherapy. Ann Oncol2003;14:2935.

    • Search Google Scholar
    • Export Citation
  • 69.

    WatanabeTTobinaiKShibataT. Phase II/III study of R-CHOP-21 versus R-CHOP-14 for untreated indolent B-cell non-Hodgkin’s lymphoma: JCOG 0203 trial. J Clin Oncol2011;29:39903998.

    • Search Google Scholar
    • Export Citation
  • 70.

    HechtJRPillaiMGollardR. A randomized, placebo-controlled phase II study evaluating the reduction of neutropenia and febrile neutropenia in patients with colorectal cancer receiving pegfilgrastim with every-2-week chemotherapy. Clin Colorectal Cancer2010;9:95101.

    • Search Google Scholar
    • Export Citation
  • 71.

    BrusamolinoERusconiCMontalbettiL. Dose-dense R-CHOP-14 supported by pegfilgrastim in patients with diffuse large B-cell lymphoma: a phase II study of feasibility and toxicity. Haematologica2006;91:496502.

    • Search Google Scholar
    • Export Citation
  • 72.

    BursteinHJParkerLMKeshaviahA. Efficacy of pegfilgrastim and darbepoetin alfa as hematopoietic support for dose-dense every-2-week adjuvant breast cancer chemotherapy. J Clin Oncol2005;23:83408347.

    • Search Google Scholar
    • Export Citation
  • 73.

    JonesRLWalshGAshleyS. A randomised pilot Phase II study of doxorubicin and cyclophosphamide (AC) or epirubicin and cyclophosphamide (EC) given 2 weekly with pegfilgrastim (accelerated) vs 3 weekly (standard) for women with early breast cancer. Br J Cancer2009;100:305310.

    • Search Google Scholar
    • Export Citation
  • 74.

    PirkerRUlspergerEMessnerJ. Achieving full-dose, on-schedule administration of ACE chemotherapy every 14 days for the treatment of patients with extensive small-cell lung cancer. Lung2006;184:279285.

    • Search Google Scholar
    • Export Citation
  • 75.

    StullDMBilmesRKimHFichtlR. Comparison of sargramostim and filgrastim in the treatment of chemotherapy-induced neutropenia. Am J Health Syst Pharm2005;62:8387.

    • Search Google Scholar
    • Export Citation
  • 76.

    ThomasXRaffouxERennevilleA. Which AML subsets benefit from leukemic cell priming during chemotherapy? Long-term analysis of the ALFA-9802 GM-CSF study. Cancer2010;116:17251732.

    • Search Google Scholar
    • Export Citation
  • 77.

    ThomasXRaffouxEBottonS. Effect of priming with granulocyte-macrophage colony-stimulating factor in younger adults with newly diagnosed acute myeloid leukemia: a trial by the Acute Leukemia French Association (ALFA) Group. Leukemia2007;21:453461.

    • Search Google Scholar
    • Export Citation
  • 78.

    ClarkOALymanGHCastroAA. Colony-stimulating factors for chemotherapy-induced febrile neutropenia: a meta-analysis of randomized controlled trials. J Clin Oncol2005;23:41984214.

    • Search Google Scholar
    • Export Citation
  • 79.

    BerghmansTPaesmansMLafitteJJ. Therapeutic use of granulocyte and granulocyte-macrophage colony-stimulating factors in febrile neutropenic cancer patients: a systematic review of the literature with meta-analysis. Support Care Cancer2002;10:181188.

    • Search Google Scholar
    • Export Citation
  • 80.

    Garcia-CarboneroRMayordomoJITornamiraMV. Granulocyte colony-stimulating factor in the treatment of high-risk febrile neutropenia: a multicenter randomized trial. J Natl Cancer Inst2001;93:3138.

    • Search Google Scholar
    • Export Citation
  • 81.

    JohnstonECrawfordJBlackwellS. Randomized, dose-escalation study of SD/01 compared with daily filgrastim in patients receiving chemotherapy. J Clin Oncol2000;18:25222528.

    • Search Google Scholar
    • Export Citation
  • 82.

    HosingC. Hematopoietic stem cell mobilization with G-CSF. Methods Mol Biol2012;904:3747.

  • 83.

    KobbeGBrunsIFenkR. Pegfilgrastim for PBSC mobilization and autologous haematopoietic SCT. Bone Marrow Transplant2009;43:669677.

  • 84.

    KrogerNZellerWFehseN. Mobilizing peripheral blood stem cells with high-dose G-CSF alone is as effective as with Dexa-BEAM plus G-CSF in lymphoma patients. Br J Haematol1998;102:11011106.

    • Search Google Scholar
    • Export Citation
  • 85.

    BarlogieBAnaissieEvan RheeF. Incorporating bortezomib into upfront treatment for multiple myeloma: early results of total therapy 3. Br J Haematol2007;138:176185.

    • Search Google Scholar
    • Export Citation
  • 86.

    HaynesAHunterAMcQuakerG. Engraftment characteristics of peripheral blood stem cells mobilised with cyclophosphamide and the delayed addition of G-CSF. Bone Marrow Transplant1995;16:359363.

    • Search Google Scholar
    • Export Citation
  • 87.

    MatasarMJCzuczmanMSRodriguezMA. Ofatumumab in combination with ICE or DHAP chemotherapy in relapsed or refractory intermediate grade B-cell lymphoma. Blood2013;122:499506.

    • Search Google Scholar
    • Export Citation
  • 88.

    ChaudharyLAwanFCumpstonA. Peripheral blood stem cell mobilization in multiple myeloma patients treat in the novel therapy-era with plerixafor and G-CSF has superior efficacy but significantly higher costs compared to mobilization with low-dose cyclophosphamide and G-CSF. J Clin Apher2013in press.

    • Search Google Scholar
    • Export Citation
  • 89.

    DuganMJMaziarzRTBensingerWI. Safety and preliminary efficacy of plerixafor (Mozobil) in combination with chemotherapy and G-CSF: an open-label, multicenter, exploratory trial in patients with multiple myeloma and non-Hodgkin’s lymphoma undergoing stem cell mobilization. Bone Marrow Transplant2010;45:3947.

    • Search Google Scholar
    • Export Citation
  • 90.

    GopalAKKaramiMMayorJ. The effective use of plerixafor as a real-time rescue strategy for patients poorly mobilizing autologous CD34(+) cells. J Clin Apher2012;27:8187.

    • Search Google Scholar
    • Export Citation
  • 91.

    MiloneGTripepiGMartinoM. Early measurement of CD34+ cells in peripheral blood after cyclophosphamide and granulocyte colony-stimulating factor treatment predicts later CD34+ mobilisation failure and is a possible criterion for guiding “on demand” use of plerixafor. Blood Transfus2013;11:94101.

    • Search Google Scholar
    • Export Citation
  • 92.

    CostaLJKramerCHoganKR. Pegfilgrastim- versus filgrastim-based autologous hematopoietic stem cell mobilization in the setting of preemptive use of plerixafor: efficacy and cost analysis. Transfusion2012;52:23752381.

    • Search Google Scholar
    • Export Citation
  • 93.

    BensingerWIWeaverCHAppelbaumFR. Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony-stimulating factor. Blood1995;85:16551658.

    • Search Google Scholar
    • Export Citation
  • 94.

    CavallaroAMLillebyKMajolinoI. Three to six year follow-up of normal donors who received recombinant human granulocyte colony-stimulating factor. Bone Marrow Transplant2000;25:8589.

    • Search Google Scholar
    • Export Citation
  • 95.

    RinaldiCSavignanoCPascaS. Efficacy and safety of peripheral blood stem cell mobilization and collection: a single-center experience in 190 allogeneic donors. Transfusion2012;52:23872394.

    • Search Google Scholar
    • Export Citation
  • 96.

    LaneTAHoADBasheyA. Mobilization of blood-derived stem and progenitor cells in normal subjects by granulocyte-macrophage- and granulocyte-colony-stimulating factors. Transfusion1999;39:3947.

    • Search Google Scholar
    • Export Citation
  • 97.

    LonialSAkhtariMKaufmanJ. Mobilization of hematopoietic progenitors from normal donors using the combination of granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor results in fewer plasmacytoid dendritic cells in the graft and enhanced donor T cell engraftment with Th1 polarization: results from a randomized clinical trial. Biol Blood Marrow Transplant2013;19:460467.

    • Search Google Scholar
    • Export Citation
  • 98.

    SohnSKKimJGSeoKW. GM-CSF-based mobilization effect in normal healthy donors for allogeneic peripheral blood stem cell transplantation. Bone Marrow Transplant2002;30:8186.

    • Search Google Scholar
    • Export Citation
  • 99.

    LinchDCMilliganDWWinfieldDA. G-CSF after peripheral blood stem cell transplantation in lymphoma patients significantly accelerated neutrophil recovery and shortened time in hospital: results of a randomized BNLI trial. Br J Haematol1997;99:933938.

    • Search Google Scholar
    • Export Citation
  • 100.

    KlumppTRManganKFGoldbergSL. Granulocyte colony-stimulating factor accelerates neutrophil engraftment following peripheral-blood stem-cell transplantation: a prospective, randomized trial. J Clin Oncol1995;13:13231327.

    • Search Google Scholar
    • Export Citation
  • 101.

    LeeSMRadfordJADobsonL. Recombinant human granulocyte colony-stimulating factor (filgrastim) following high-dose chemotherapy and peripheral blood progenitor cell rescue in high-grade non-Hodgkin’s lymphoma: clinical benefits at no extra cost. Br J Cancer1998;77:12941299.

    • Search Google Scholar
    • Export Citation
  • 102.

    SpitzerGAdkinsDRSpencerV. Randomized study of growth factors post-peripheral-blood stem-cell transplant: neutrophil recovery is improved with modest clinical benefit. J Clin Oncol1994;12:661670.

    • Search Google Scholar
    • Export Citation
  • 103.

    KawanoYTakaueYMimayaJ. Marginal benefit/disadvantage of granulocyte colony-stimulating factor therapy after autologous blood stem cell transplantation in children: results of a prospective randomized trial. The Japanese Cooperative Study Group of PBSCT. Blood1998;92:40404046.

    • Search Google Scholar
    • Export Citation
  • 104.

    CastagnaLBramantiSLevisA. Pegfilgrastim versus filgrastim after high-dose chemotherapy and autologous peripheral blood stem cell support. Ann Oncol2010;21:14821485.

    • Search Google Scholar
    • Export Citation
  • 105.

    ZiakasPDKourbetiIS. Pegfilgrastim vs. filgrastim for supportive care after autologous stem cell transplantation: can we decide?Clin Transplant2012;26:1622.

    • Search Google Scholar
    • Export Citation
  • 106.

    BattiwallaMMcCarthyPL. Filgrastim support in allogeneic HSCT for myeloid malignancies: a review of the role of G-CSF and the implications for current practice. Bone Marrow Transplant2009;43:351356.

    • Search Google Scholar
    • Export Citation
  • 107.

    NemunaitisJRabinoweSNSingerJW. Recombinant granulocyte-macrophage colony-stimulating factor after autologous bone marrow transplantation for lymphoid cancer. N Engl J Med1991;324:17731778.

    • Search Google Scholar
    • Export Citation
  • 108.

    IppolitiCPrzepiorkaDGiraltS. Low-dose non-glycosylated rhGM-CSF is effective for the treatment of delayed hematopoietic recovery after autologous marrow or peripheral blood stem cell transplantation. Bone Marrow Transplant1993;11:5559.

    • Search Google Scholar
    • Export Citation
  • 109.

    DaleDCBonillaMADavisMW. A randomized controlled phase III trial of recombinant human granulocyte colony-stimulating factor (filgrastim) for treatment of severe chronic neutropenia. Blood1993;81:24962502.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 529 530 27
PDF Downloads 72 72 3
EPUB Downloads 0 0 0