Novel Biospecific Agents for the Treatment of Myelodysplastic Syndromes

Restricted access

Levels of treatment for patients with myelodysplastic syndromes (MDS) fall within 3 broad categories: supportive care, low- and high-intensity therapy. Most approaches remain experimental, and supportive care remains the standard of treatment in MDS. In parallel with the growing knowledge of the multiple pathobiologic abnormalities in MDS, increasing numbers of low-intensity, biospecific agents that target these pathogenetic lesions have entered clinical trial testing. Although the term “biospecific” has been applied to many of these investigational drugs, they often exert pleiotropic effects, many of which remain to be identified. An ongoing challenge will be to more fully characterize the mechanisms of action of these drugs and to characterize biologic correlates of response. With these data in hand, it will be increasingly feasible to treat patients with combinations of biospecific drugs with non-overlapping actions and toxicities, a therapeutic approach that is likely required to effectively overcome the barriers posed by the biologic heterogeneity of MDS. This review focuses on recent therapeutic approaches using such biologic response modifiers to treat MDS.

Correspondence: Peter L. Greenberg, MD, Professor of Medicine, Division of Hematology, Stanford University Medical Center, 703 Welch Road, Suite G-1, Stanford, CA 94305-5750. E-mail: peterg@stanford.edu
  • 1

    Dredge K, Marriott JB, Dalgleish AG. Immunological effects of thalidomide and its chemical and functional analogs. Crit Rev Immunol. 2002;22:425437.

    • Search Google Scholar
    • Export Citation
  • 2

    Anderson KC. Novel biologically based therapies for myeloma. Cancer J. 2001;7(Suppl 1):S19S23.

  • 3

    Alvi S, Borok RZ, Shaher A. Thalidomide significantly modifies bone marrow microenvironment in myelodysplastic syndrome (MDS) patients (Abstr #1454). Blood 2002;100(Suppl. 1):375a.

    • Search Google Scholar
    • Export Citation
  • 4

    Shetty V, Alvi S, Zorat F. Effect of the anti-angiogenic thalidomide on the biological characteristics of patients with myelodysplastic syndromes (Abstr #4902). Blood 2002; 100(Suppl 2):337b.

    • Search Google Scholar
    • Export Citation
  • 5

    Alvi S, Anthwal S, Shaikh M. Thalidomide significantly augments proliferation and cytokine secretion in bone marrow cultures established from myelodysplastic syndrome (MDS) patients (Abstr #1484). Blood 2001;98(Suppl 1):352a.

    • Search Google Scholar
    • Export Citation
  • 6

    Raza A, Meyer P, Dutt D. Thalidomide produces transfusion independence in long-standing refractory anemias of patients with myelodysplastic syndromes. Blood 2001; 98:958965.

    • Search Google Scholar
    • Export Citation
  • 7

    Moreno-Aspitia A, Geyer S, Li C-Y. N998B: multicenter phase II trial of thalidomide (thal) in adult patients with myelodysplastic syndromes (MDS) (Abstr 354). Blood 2002;100(Suppl 1):96a.

    • Search Google Scholar
    • Export Citation
  • 8

    Musto P, Falcone A, Sanpaolo G. Thalidomide abolishes transfusion-dependence in selected patients with myelodysplastic syndrome. Haematologica 2002;87:884886.

    • Search Google Scholar
    • Export Citation
  • 9

    Strupp C, Germing U, Aivado M. Thalidomide for the treatment of patients with myelodysplastic syndromes. Leukemia 2002;16:16.

  • 10

    Raza A, Lisak LA, Tahir S. Trilineage responses to arsenic trioxide (Trisenox®) and thalidomide in patients with myelodysplastic syndromes (MDS), particularly those with inv(3)(q21q26.2) (Abstr #3142). Blood 2002;100(Suppl 1):795a.

    • Search Google Scholar
    • Export Citation
  • 11

    Raza A, Lisak LA, Tahir S. Combination of thalidomide and etanercept (tumor necrosis factor receptor or TNFR) effective in improving the cytopenias of some patients with myelodysplastic syndromes (MDS) (Abstr #4914). Blood 2002;100(Suppl 2):340b.

    • Search Google Scholar
    • Export Citation
  • 12

    Steurer M, Sudmeier I, Stauder E. Thromboembolic events in patients with myelodysplastic syndrome receiving thalidomide in combination with darbepoetin alfa. Br J Haematol 2003;121:101103.

    • Search Google Scholar
    • Export Citation
  • 13

    Richardson PG, Schlossman RL, Weller E. Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood 2002;100:30633067.

    • Search Google Scholar
    • Export Citation
  • 14

    Corral LG, Haslett PAJ, Muller GW. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-α. J Immunol 1999;163:380386.

    • Search Google Scholar
    • Export Citation
  • 15

    Muller G, Chen R, Huang SY. Amino-substituted thalidomide analogs: potent inhibitors of TNF-α production. Bioorg Med Chem Lett 1999;9:16251630.

    • Search Google Scholar
    • Export Citation
  • 16

    Hideshima T, Chauhan D, Shima Y. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood 2000; 96:29432950.

    • Search Google Scholar
    • Export Citation
  • 17

    Gupta D, Treon SP, Shima Y. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 2001;15:19501961.

    • Search Google Scholar
    • Export Citation
  • 18

    Davies FE, Raje N, Hideshima T. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 2001;98:210216.

    • Search Google Scholar
    • Export Citation
  • 19

    Bellamy WT, Richter L, Sirjani D. Vascular endothelial growth factor is an autocrine promotor of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood 2001;97:14271434.

    • Search Google Scholar
    • Export Citation
  • 20

    Mahadevan D, List AF, Tate W. The immunomodulatory thalidomide analog CC5013 is a potent receptor tyrosine kinase (RTK) inhibitor that abolishes vascular endothelial growth factor (VEGF) trophic response in malignant myeloid progenitors. Leuk Res 2003;27(Suppl 1):S108S109.

    • Search Google Scholar
    • Export Citation
  • 21

    List AF, Kurtin SE, Glinsmann-Gibson BJ. High erythropoietic remitting activity of the immunomodulatory thalidomide analog, cc5013, in patients with myelodysplastic syndrome (Abstr #353). Blood 2002;100(Suppl 1):96a.

    • Search Google Scholar
    • Export Citation
  • 22

    Parker J, Mufti GJ. Ras and myelodysplasia: lesions from the last decade. Semin Hematol 1996;33:206224.

  • 23

    Casey PJ, Solski PA, Der CJ. P21ras is modified by a farnesyl isoprenoid. Proc Natl Acad Sci USA 1989; 86:83238327.

  • 24

    End DW, Mets G, Todd AV. Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res 2001;61:131137.

    • Search Google Scholar
    • Export Citation
  • 25

    Karp JE, Lancet JE, Kauffmann SH. Clinical and biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: a phase I clinical-laboratory correlative trial. Blood 2001;97: 33613369.

    • Search Google Scholar
    • Export Citation
  • 26

    Kurzrock R, Kantarjian HM, Cortes JE. Farnesyl protein transferase inhbitor (FTI) ZARNESTRA™ (R115777) in patients with myelodysplastic syndrome (MDS): clinical and biological aspects. Leuk Res 2003;27(Suppl 1):S105S106.

    • Search Google Scholar
    • Export Citation
  • 27

    List A, Beran A, DiPersio A. Opportunities for Trisenox® (arsenic trioxide) in the treatment of myelodysplastic syndromes. Leukemia 2003;17:14991507.

    • Search Google Scholar
    • Export Citation
  • 28

    Donelli A, Chiodino C, Panissidi T. Might arsenic trioxide be useful in the treatment of advanced myelodysplastic syndromes? Haematologica 2000;85:10021003.

    • Search Google Scholar
    • Export Citation
  • 29

    Miller WH Jr, Schipper HM, Lee JS. Mechanisms of action of arsenic trioxide. Cancer Res 2002;62:38933903.

  • 30

    Miller WH Jr. Molecular targets of arsenic trioxide in malignant cells. Oncologist 2002;7(Suppl 1):1419.

  • 31

    Huang X-J, Wiernik PH, Klein RS. Arsenic trioxide induces apoptosis of myeloid leukemia cells by activation of caspases. Med Oncol 1999;16:5864.

    • Search Google Scholar
    • Export Citation
  • 32

    Li YM, Broome JD. Arsenic targets tubulins to induce apoptosis in myeloid leukemia cells. Cancer Res 1999;59:776780.

  • 33

    Zhang W, Ohnishi K, Shigeno K. The induction of apoptosis and cell cycle arrest by arsenic trioxide in lymphoid neoplasms. Leukemia 1998;12:13831391.

    • Search Google Scholar
    • Export Citation
  • 34

    Vey N, Dreyfus F, Guerci A. Trisenox® (arsenic trioxide) in patients (pts) with myelodysplastic syndromes (MDS): preliminary results of a phase 1/2 study. Leuk Res 2003; 27(Suppl 1):S111112.

    • Search Google Scholar
    • Export Citation
  • 35

    List AF, Schiller GJ, Mason J. Trisenox® (arsenic trioxide) in patients with myelodysplastic syndromes (MDS): preliminary findings in a phase 2 clinical study. Leuk Res 2003;27(Suppl 1):S106.

    • Search Google Scholar
    • Export Citation
  • 36

    Greenberg PL. The myelodysplastic syndromes. In: Hematology: Basic Principles and Practice, 3rd ed., Hoffman R, Benz E, Shattil S, Furie B, Cohen H, eds. New York, NY: Churchill Livingstone; 1999;11061129.

    • Search Google Scholar
    • Export Citation
  • 37

    Deeg HJ, Beckham C, Loken MR. Negative regulators of hemopoiesis and stroma function in patients with myelodysplastic syndrome. Leuk Lymphoma 2000;37:405414.

    • Search Google Scholar
    • Export Citation
  • 38

    Raza A, Gezer S, Mundle S: Apoptosis in bone marrow biopsy samples involving stromal and hematopoietic cells in 50 patients with myelodysplastic syndromes. Blood 1995; 86:268276.

    • Search Google Scholar
    • Export Citation
  • 39

    Rajapaksa R, Ginzton N, Rott L: Altered oncogene expression and apoptosis in myelodysplastic syndrome marrow cells. Blood 1996;88:42754287.

  • 40

    Greenberg PL: Apoptosis and its role in the myelodysplastic syndromes: implications for disease natural history and treatment. Leuk Res 1998;22:11231136.

    • Search Google Scholar
    • Export Citation
  • 41

    Parker J, Mufti G, Rasool F. The role of apoptosis, proliferation and the Bcl2-related proteins in the myelodysplastic syndromes and acute myeloid leukemia secondary to MDS. Blood 2000;96:39323938.

    • Search Google Scholar
    • Export Citation
  • 42

    Gersuk GM, Lee JW, Beckham CA. Fas (CD95) receptor and fas-ligand expression in bone marrow cells from patients with myelodysplastic syndrome. Blood 1996;88:11221123.

    • Search Google Scholar
    • Export Citation
  • 43

    Bouscary D, De Vos J, Guesnu M. Fas/Apo-1 (CD95) expression and apoptosis in patients with myelodysplastic syndromes. Leukemia 1997;11:839845.

    • Search Google Scholar
    • Export Citation
  • 44

    Shetty V, Mundle S, Alvi S. Measurement of apoptosis, proliferation and three cytokines in 46 patients with myelodysplastic syndromes. Leuk Res 1996;20:891900.

    • Search Google Scholar
    • Export Citation
  • 45

    Shimazaki K, Oshima K, Suzimiya J, Kawasaki C, Kikuchi M: Evaluation of apoptosis as a prognostic factor in myelodysplastic syndromes. Br J Haematol 2000;110:584590.

    • Search Google Scholar
    • Export Citation
  • 46

    Hellstrom-Lindberg E, Schmidt-Mende J, Forsblom AM. Apoptosis in refractory anaemia with ringed sideroblasts is initiated at the stem cell level and associated with increased activation of caspases. Br J Haematol 2001;112:714726.

    • Search Google Scholar
    • Export Citation
  • 47

    Ali A, Mundle SD, Ragasa D. Sequential activation of caspase-1 and caspase-3-like proteases during apoptosis in myelodysplastic syndromes. J Hematother Stem Cell Res 1999;8:343356.

    • Search Google Scholar
    • Export Citation
  • 48

    Moreland L, Baumgartner S, Schiff M. Treatment of rheumatoid arthritis with the recombinant human TNF receptor (p75)-Fc-fusion protein. N Engl J Med 2001; 33:11801187.

    • Search Google Scholar
    • Export Citation
  • 49

    Gersuk G, Beckham C, Loken M. A role for TNF-α, fas and fas ligand in marrow failure associated with myelodysplastic syndrome. Br J Haematol. 1998;103:176188.

    • Search Google Scholar
    • Export Citation
  • 50

    Deeg HJ, Gotlib J, Beckham C. Soluble TNF receptor fusion protein (etanercept) for the treatment of myelodysplastic syndrome: a pilot study. Leukemia 2002;16:162164.

    • Search Google Scholar
    • Export Citation
  • 51

    Maciejewski JP, Ristiano AM, Sloand EM. A pilot study of the recombinant soluble human tumour necrosis factor receptor (p75)-Fc fusion protein in patients with myelodysplastic syndromes. Br J Haematol 2002;117:119126.

    • Search Google Scholar
    • Export Citation
  • 52

    Silverman LR, Demakos EP, Peterson BL. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the CALGB. J Clin Oncol 2002;20:24292440.

    • Search Google Scholar
    • Export Citation
  • 53

    Kornblith AB, Herndon JE, Silverman LR. Impact of azacytidine on the quality of life of patients with myelodysplastic syndrome treated in a randomized phase III trial: a CALGB study. J Clin Oncol 2002;20:24412452.

    • Search Google Scholar
    • Export Citation
  • 54

    Wijermans P, Lubbert M, Verhoef G. Low-dose 5-aza-2′-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J Clin Oncol 2000;18:956962.

    • Search Google Scholar
    • Export Citation
  • 55

    Lubbert M, Wijermans P, Kunzmann R. Cytogenetic responses in high-risk myelodysplastic syndrome following low-dose treatment with the DNA methylation inhibitor 5-aza-2′-deoxycytidine. Br J Haematol 2001;14:349357.

    • Search Google Scholar
    • Export Citation
  • 56

    Daskalakis M, Nguyen TT, Nguyen C. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2'-deoxycytidine (decitabine) treatment. Blood 2002;100:29572964.

    • Search Google Scholar
    • Export Citation
  • 57

    Najfeld V, Silverman L, Scalise LR. Modulation of the cytogenetically abnormal clone in MDS (Abstr # 356). Blood 2002;100(Suppl 1):97a.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 55 37 1
PDF Downloads 27 15 1
EPUB Downloads 0 0 0